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SUMMARY

This work presents a finite element solution of the 3D magneto-hydrodynamics equations. The formula-
tion takes explicitly into account the local conservation of the magnetic field, giving rise to a conservative
formulation and introducing a new scalar variable. A stabilization technique is used in order to allow
equal linear interpolation on tetrahedral elements of all the variables. Numerical tests are performed in
order to assess the stability and the accuracy of the resulting methods. The convergence rates are
calculated for different stabilization parameters. Well-known MHD benchmark tests are calculated.
Results show good agreement with analytical solutions. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical methods for magneto-hydrodynamic (MHD) equations have attracted the interest
of many researchers over the past two decades. The literature presents mainly two trends for
formulating MHD problems: using the magnetic field B as the independent variable or using
the vector potential A with the associated scalar potential. Choosing between the two
formulations depends on many factors and, especially on the physical problem to be solved.
The methods of solving for the vector potential are well-known in the pure electromagnetic
context [1–4]. One can consult Biro and Preis [5] for a general overview of the vector potential
methods, and some of their electromagnetic applications.

In the context of MHD, these methods have also been popular and intensively used to solve
MHD equations in different situations. Fautrelle [6] used a vector potential formulation in
solving the magnetic part of electromagnetic stirring problems. He treated it as a pure
electromagnetic problem by dropping motion effects in the Maxwell equations. Mestel [7]
examined, both analytically and numerically, the process of levitation melting of metals.
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Lympany et al. [8] presented numerical results for the MHD effects in aluminium reduction
cells. Assuming a steady two-dimensional phenomenon, they solved for the scalar potential f

and deduced the magnetic field using the Biot–Savart law. Besson et al. [9] developed a
two-dimensional finite element method for solving both the MHD and the free-surface
problems associated with electromagnetic casting (EMC). They represented the outside poten-
tial by an integral equation, so their method could be described as a FEM/BEM one. More
recently, Conraths [10] described the magnetic field by an electric vector potential and a
magnetic scalar potential, for modeling an inductive heating device for thin moving metal
strips. While this literature survey is by no means exhaustive, it illustrates the general use of
vector potential formulations, indicates their popularity and wide use in the literature and
underlines the main idea of these formulations: namely, that the introduction of the vector
potential circumvents the explicit imposition of the magnetic free-divergence constraint since
the conservation of the magnetic field is implicitly respected within the definition of the vector
potential.

The second main trend in the literature consists in solving directly for the magnetic field B.
Doing so would normally result in an overdetermined system of equations. This can be
overcome by dropping the free-divergence equation and the terms implying this same diver-
gence within the magnetic induction equation. The resulting vectorial equation is a diffusion–
convection ‘Helmholtz’-like equation. Such a formulation has also been thoroughly used for
the solution of MHD equations. One can consult Sazhin et al. [11], where the authors solved
the resulting Helmholtz equation with a finite difference method, or Gardner and Gardner
[12], who presented a two-dimensional bi-cubic B-spline finite element method for the MHD
channel flow. Once again, while this literature survey of the ‘Helmholtz’ formulation is not
meant to be either exhaustive or complete, it indicates that these formulations have already
been used by many authors and in many different contexts.

These two main families of formulations share a feature in common. Both do not explicitly
impose the free-divergence condition on the magnetic field. To the best of the authors
knowledge, only Oki and Tanahashi [13,14] have developed numerical schemes that explicitly
satisfy the solenoidal condition of the magnetic field. They introduced a variable called
hydromagnetic cross-helicity G=u ·B and retained the free-divergence equation within their
system of equations. They presented results for the natural convection of a thermoelectrically
conducting fluid under a magnetic field. The actual work, initiated in [15], aimed at developing
a conservative finite element method for the MHD equations. ‘Conservation’ means an
appropriate satisfaction of the free-divergence condition by the numerical scheme. Therefore,
in this paper a conservative and stable finite element solution of the 3D MHD equations is
presented, with a method that takes into account both the magnetic induction and the
magnetic field conservation equations.

The remainder of the paper is organized in five sections. In the first section, the MHD
governing equations are presented and reviewed. The above cited Helmholtz and vector
potential formulations are presented and briefly commented upon. In the second section, the
conservative method is developed. It will be shown that the introduction of a Lagrange
multiplier within the system of equations circumvents the overdetermination of the system,
while giving rise to equivalent equations if appropriate boundary conditions are prescribed. In
the third section, the Galerkin weak form of the equations is obtained, giving rise to a mixed
finite element formulation. A stabilization technique is introduced to circumvent the usual
Brezzi–Babuska stability conditions and to allow equal interpolation for all the variables. It is
also seen that a penalty factor is introduced in order to force the magnetic divergence towards
zero. In the fourth section, systematic numerical experiments are carried out to assess the
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accuracy and stability of the different methods resulting from our formulation. Tests are then
run to validate the numerical code that has been developed. The main conclusions are
summarized in the last section.

2. THE GOVERNING EQUATIONS

The MHD equations can be derived from the Maxwell equations, Ohm’s law for a moving
medium and the principle of conservation of the electric charge (Landau et al. [16]). Under the
classical assumptions of neglecting both the displacement current (D/(t and the time variation
of the charge density (q/(t, when compared with the electric current density j (D and q are the
electric induction field and the electric charge density respectively), assuming the permittivity
e, the magnetic permeability m and the electric conductivity s to be constants (e and m are
equal to those of free space), one can write:

9×B=m j, (1)

9×E= −
(B
(t

, (2)

9 ·B=0, (3)

j=s(E+U×B), (4)

9 · j=0, (5)

where B and E are respectively, the magnetic and electric fields. Noting that by virtue of (1)
the divergence of the electric current density j is zero, Equation (5) becomes superfluous.
Taking the curl of Ohm’s law (4), term by term, and making use of Faraday’s and Ampere’s
laws (1) and (2), one obtains:

(B
(t

−9× (U×B)+h9× (9×B)=0, (6)

where h=1/ms, is the magnetic diffusivity coefficient. Once Equation (6) is solved for the
magnetic field B, the electric field can be deduced from the following equation:

E=
9×B

h
−U×B (7)

and then the electric current density j can be calculated from Equation (4).
Equation (6) is the best known and used form of the magnetic induction equation. It consists

of a diffusive second-order curl–curl term, a convective first-order curl term and a hyperbolic
in time first-order term. It brings the advantage of directly relating the main hydrodynamic
quantity, namely the velocity field, to the main electromagnetic one, namely the magnetic field,
without any interference. Here it should be pointed out, that the magnetic free-divergence
constraint (3), which was not used, is implicit in Equation (6). Indeed, if the divergence of
Equation (6) is taken, term by term, one obtains the following condition on the divergence of
B:

((9 ·B)
(t

=0. (8)
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Equation (8) stipulates that the divergence of B remains constant over time and thus zero if it
is initially null. However, it is well-known that in general, the construction of such an initial
divergence-free field is not an easy task. Thus, the resulting system of MHD equations consists
of both Equations (3) and (6).

2.1. The ‘Helmholtz’ formulation

Using the vector identity stating that:

9× (9×B)= −92B+9(9 ·B), (9)

the magnetic induction equation (6) could be rewritten as:

(B
(t

−9× (U×B)−h92B+h9(9 ·B)=0. (10)

One can make use of Equation (3) in order to obtain the following ‘Helmholtz’ equation:

(B
(t

−9× (U×B)−h92B=0 (11)

and hence reducing the MHD system of Equations (3) and (6) to Equation (11) with the
appropriate set of boundary conditions. As stated in Section 1, many numerical methods for
MHD problems have been based on this formulation. It should be noted that circumventing
the constraint (3) by solving Equation (11) results in a much simpler system to solve. However,
Equation (11) does not state anymore that the divergence of B remains constant over time. It
only states that:

((9 ·B)
(t

=9 · (h92B). (12)

One can expect this divergence to play a non-negligible role in the discrete form of the weak
problem associated with the continuous strong problem (11).

Remark 1:

The authors would like to point out here an analogy with the Stokes problem for an
incompressible fluid with constant viscosity. The Stokes problem is written as:

−9 · (2hg(U))+9p=F, (13)

9 ·U=0, (14)

with h, in this case being the dynamic viscosity coefficient and g(U) being the symmetric part
of the velocity gradient tensor. If from (13) and (14) one derives the equations for the special
case of constant viscosity h, then by making use of Equation (14), one gets:

−h92U+9p=F. (15)

Although Equation (14) has been used in order to derive (15), it is well-known in the context
of the fluid dynamics, that one has to keep the divergence-free constraint (14) within the
system of equations, while developing any numerical solution of the Stokes problem. The
pressure p plays the role of a Lagrange multiplier in order to enforce the velocity divergence-
free condition. This analogy is also valid for the Navier–Stokes equations. The magnetic
continuity equation (3) is the electromagnetic equivalent of the hydrodynamic continuity
equation (14) and deserves considerable attention.
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2.2. The 6ector potential formulation

Alternative to the above derivation of equations, one can start from Ohm’s law (4), make
use of Equation (1), and noting that by definition:

E= −9f−
(A
(t

, (16)

write the following equation in terms of the vector potential A:

(A
(t

−U× (9×A)+h9× (9×A)+9f=0, (17)

the vector potential A being defined as:

B=9×A. (18)

Introducing such a vector brings the advantage of implicitly respecting the divergence-free
constraint (3). However, this technique of introducing the vector potential presents a challeng-
ing problem when gauging the field A and dealing with its boundary conditions in order to
enforce the uniqueness of the solution of the magnetic field.

3. THE CONSERVATIVE FORMULATION

In order to introduce this family of formulations, let us recall the ‘Helmholtz’ formulation. The
idea leading to this formulation is that the system composed of Equations (3) and (6) is
overspecified and leads to more equations than unknowns. For example, in the three-dimen-
sional case and if the velocity field is assumed known, the system of equations composed by
Equations (3) and (6), gives rise to four linear equations with three unknowns. In Jiang et al.
[17], the authors showed that an equivalent situation exists in the pure electromagnetic context.
They demonstrated that the first-order div–curl Maxwell’s system of equations (1)–(3) is not
an overdetermined one. They showed that by introducing two dummy scalar variables, they
end up with an equivalent system of eight equations with eight unknowns. They underlined the
dangers of circumventing the ‘overspecification’ of system (1)–(3) by dropping the free-diver-
gence equation (3). These dangers are related to the ellipticity of the system, the uniqueness of
the solution and the ensuing spurious numerical solutions that may appear.

Using the same technique, it will be shown that the second-order system of Equations (3)
and (6) is not an overspecified one.

Let V be a bounded, simply connected, convex and open domain, which is included in R3,
with a piecewise smooth boundary G, the union of G1 and G2, with n, the unity normal
outward vector. Let Equations (3) and (6) hold in the domain V and be associated with
appropriate boundary conditions on G. Adding the gradient of a scalar variable to Equation
(6), one gets the following new equation:

(B
(t

−9× (U×B)+h9× (9×B)+9p=0 in V. (19)

Let the homogeneous Dirichlet condition

p=0 (20)
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hold on the boundary G. Taking the divergence of Equation (19) and using Equation (3), one
gets:

Dp=0 in V. (21)

As Equation (21) is submitted to the boundary condition (20), this leads to the unique
physical solution p=0 over all the domain V. Thus, the scalar p is really a dummy variable
(which in theory should be null) and the system of Equations (3) and (19) is equivalent to the
system (3) and (6). The new system of equations has in the three-dimensional case, four
equations with four unknowns and is no longer overdetermined. By analogy to the Stokes and
the Navier–Stokes equations, p is interpreted as a Lagrange multiplier used to enforce the
divergence-free condition (3).

Remark 2:

Equation (19) could be rewritten in many equivalent forms. Particularly, after making use of
the vector identity (9), one gets the following equivalent equation:

(B
(t

−9× (U×B)−h92B+h9(9 ·B)+9p=0 in V. (22)

In the rest of the present work, Equation (22) along with the constraint (3), is used as the
model for the MHD equations.

Remark 3:

It is easily predictable that non-respect of the constraint (3) leads to inaccurate numerical
solutions. In order to show this, suppose one discards the divergence-free equation and retains
only Equation (10). Let for simplicity, the velocity field be equal to zero, and assume the
problem to be steady. From (10), one obtains:

9× (9×B)=0 in V, (23)

with the most probable boundary conditions

n ·B=0 on G1, (24)

n×B=0 on G2. (25)

The solution of Equation (23) subject to the boundary conditions (24) and (25) is not
unique. It admits a kernel composed of the gradient of scalar variables satisfying the
conditions (24) and (25). Any numerical method for problem (23)–(25) will fail to provide a
unique solution. The constraint (3) should thus be taken into account and it behaves like a
gauge condition filtering the divergence-free solution. The respect of this condition reduces the
kernel of spurious solutions to a unique null scalar function.

Indeed, according to the unity partition theorem (Brezis [18]), there exist scalar functions f

that are C�, satisfying (f/(n=0 on G1, n×9f=0 on G2 and f=0 in a part of V. Thus, if
B0 is a particular solution of (23)–(25), then any vector B=B0+9f is also a solution. But if
the vector solution has to satisfy the divergence-free condition, then Df=0 in V. As (f/(n=0
on G1 and n×9f=0 on G2, then f is equal to a constant in V. Since f is prescribed zero in
a part of the domain, then f=0 over all the domain V.
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4. VARIATIONAL FORMULATION AND DISCRETIZATION

4.1. The Galerkin method

The Galerkin weighted residual formulation for the system of Equations (3) and (19) is
obtained through multiplying the two equations by two test functions B* and p* respectively,
chosen in two appropriate functional spaces. After integrating the resulting equations over the
whole domain V, one gets:&

V
B*·

�(B
(t
�

dV−h
&

V
B*·92B dV+h

&
V

B*·9(9 ·B) dV−
&

V
B*·9× (U×B) dV

+
&

V
B*·9p dV=0, (26)

&
V

p*(9 ·B) dV=0, (27)

for all B* and all p*.
Applying the divergence theorem, the weak form of the Galerkin formulation is obtained as:&

V
B*·

�(B
(t
�

dV+h
&

V
9B*·9B dV−

&
V

B*·9× (U×B) dV+
&

V
B*·9p dV

−h
&

V
(9 ·B)(9 ·B*) dV−h

&
G

(n ·9B*)·B* dG+h
&

G
(n ·B*)(9 ·B) dG=0, (28)

&
V

p*(9 ·B) dV=0. (29)

In the usual manner, the discrete problem associated with the weak form (28) and (29) can be
established as:&

V
Bh*·

�(B
(t
�

dV+h
&

V
9Bh*·9Bh dV−

&
V

Bh*·9× (U×Bh) dV+
&

V
Bh*·9ph dV

−h
&

V
(9 ·Bh)(9 ·Bh*) dV−h

&
G

(n ·9Bh) ·Bh* dG+h
&

G
(n ·Bh*)(9 ·Bh) dG=0, (30)

&
V

ph*(9 ·Bh) dV=0, (31)

for all Bh* and ph* belonging to some finite-dimensional functional subspaces.
The variational problem formulated by Equations (30) and (31) is of mixed type and

presents many similarities with the mixed variational formulation for the Navier–Stokes
equations (Brezzi and Fortin [19]). Hence, it requires the respect of the inf–sup stability
condition, also called the L.B.B. condition in order to find a stable numerical solution
(Bh*, ph*). In practice, the respect of this stability condition implies the use of different
approximations for the two variables (Bh*, ph*). In three dimensions, elements respecting the
L.B.B. condition could prove expensive with regard to execution time and memory storage.
Moreover, the implementation of three dimensions mixed formulations is quite complicated.
Another way of obtaining a stable finite element method for the system (30) and (31) is by
circumventing the L.B.B. condition (Hughes et al. [20]).
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4.2. The stabilized finite element method

Suppose Vh=@Ve, a certain partition of the domain V into elements and h the ‘size’ of an
element Ve. Following Brezzi and Pitkaranta [21], the continuity equation (31) is modified as:&

V
ph*(9 ·Bh) dV+ %

Ve�Vh

t1
&

Ve

9ph ·9ph* dV=0, (32)

where t1 is a function of the mesh size h to be specified.
This stabilization technique is equivalent to augmenting the continuity equation (3) of the

strong problem with a Laplacian dissipation term of the scalar p and has already been used
successfully for the Navier–Stokes incompressible and compressible flows (Baruzzi et al. [22]).
Hence, the stabilized formulation can be introduced as:&

V
Bh*·

�(B
(t
�

dV+h
&

V
9Bh*·9Bh dV−

&
V

Bh*·9× (U×Bh) dV+
&

V
Bh*·9ph dV

−h
&

V
(9 ·Bh)(9 ·Bh*) dV−h

&
G

(n ·9Bh) ·Bh* dG+h
&

G
(n ·Bh*)(9 ·Bh) dG=0, (33)

&
V

ph*(9 ·Bh) dV+ %
Ve�Vh

t1
&

Ve

9ph ·9ph* dV=0. (34)

Once the stability of the formulation is insured, the volume integral emanating from the
9(9 ·B) term is penalized with a term t2 in order to enforce the magnetic divergence toward
small values when the convection is dominant (i.e. small values of h). Then, the implemented
formulation could be presented as:&

V
Bh*·

�(B
(t
�

dV+h
&

V
9Bh*·9Bh dV−

&
V

Bh*·9× (U×Bh) dV+
&

V
Bh*·9ph dV

+ (t2−h)
&

V
(9 ·Bh)(9 ·Bh*) dV−h

&
G

(n ·9Bh) ·Bh* dG+h
&

G
(n ·Bh*)(9 ·Bh) dG=0,

(35)&
V

ph*(9 ·Bh) dV+ %
Ve�Vh

t1
&

Ve

9ph ·9ph* dV=0. (36)

The stabilized method defined by (35) and (36) allows the use of equal interpolation for the
two variables (Bh*, ph*), thus facilitating the implementation and permitting the use of cheaper
elements. In this work, all the variables are interpolated by linear functions on tetrahedral
elements.

5. NUMERICAL RESULTS

5.1. Steady case

In order to assess the stability and the quality of the finite element formulation described
above, the problem (35)–(36) is studied in a cubic domain (05x51, 05y51, 05z51). The
velocity vector is fixed to U= (1, 0, 0)T. The Dirichlet boundary conditions and the sollicita-
tion vector f= (2x−2h, −2h, 2z)T are imposed in such a way as to reproduce approximately
an arbitrary solution of the continuous problem, namely B= (x2, y2, −2(x+y)z)T and p=0.
The dissipation coefficient t1 can be given by one or the other of the two following expressions:
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t1=a
h2

4h
, (37)

t1=a
��2U

h
�2

+
�4h

h2

�2�−1/2

. (38)

The penalization factor t2 could be set to either t2=0, which corresponds to the original
physical model, or to t2=Uh/2. In the later case the coefficient r=t2−h ends up to be:

r=h
�

1−
Remh

2
�

, (39)

where Remh
is the local magnetic Reynolds number defined by:

Remh
=smUh. (40)

Computations have been made for two different magnetic diffusion coefficients h=1.2×
10−1 and h=1.2×10−3 representing respectively, a highly diffusive case and a highly
convective one, and for a=0.1, 1/3 and 1.0. For each case, the mesh variation of the
L2(V)-norms of the magnetic divergence 9 ·Bh, the error Bh−B, the Lagrange multiplier
ph and its gradient 9ph were all calculated.

Comments:

Highly con6ecti6e case
If the magnetic convection is important (h=1.2×10−3), the best solutions are obtained with
t2=Uh/2 and this is true quite independently of the expression used for t1. Actually, the
methods generated with t2=Uh/2 are much more conservative and accurate than the
‘Helmholtz’ formulation and the approximation obtained with t2=0 (Figure 1(a) and (b)).

However it should be noticed that the expression for t1 given in (38), which in this case is
of order O(h) in the convective-dominant case, gives rise to optimal convergence rates for both
Bh and ph. In fact, for the Lagrange multiplier p error and the magnetic field error, the
convergence rate is 2. For the gradient of ph and the divergence of Bh, the rates are around
unity (Figure 2).

When t1 is fixed to its expression in Equation (37), which in the convective-dominant case
is of order O(h2), the convergence rates are still optimal for the magnetic induction field and
for its divergence, while for p and its gradient the rates become suboptimal. For ph, the rate
is around 1 and the gradient of ph seems to be bounded by a constant. Figure 3 shows these
convergence rates for a=0.1.

When compared together, the method generated by Equation (38) gives rise to better
accuracy and magnetic conservation than the method generated by Equation (37). The
methods do not seem to be very sensitive to the value of the constant a, so a=0.1, seems a
suitable value to be assigned.

If t2=0 and the convection is still dominant, then the accuracy of the method is very poor
and the error norms are very important, especially when Equation (37) is used for t1.
Regardless of the expression t1 used, the method is very sensitive to the value of the constant
a showing signs of instabilities due to the effect of the convection. No general trend for the
convergence rates could be drawn. Thus, one should avoid using such a method.

Highly diffusi6e case
When diffusion is dominant (h=1.2×10−1), all the methods obtained by the different
expressions of t1 and t2 are accurate, convergent and stable. When t2=0, both expressions
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(37) and (38) for t1 give rise to approximately the same results in terms of error and magnetic
divergence. This could be explained by the fact that since the magnetic diffusion is dominant,
Equations (37) and (38) lead both to expressions of O(h2).

Figure 1. (a) The L2 norms of the magnetic field divergence vs. the mesh size. Comparison between the Helmholtz
formulation and conservative formulation with: t1=0.1((2U/h)2+ (4h/h2)2)−0.5; t2=Uh/2; h=1.2×10−3. (b)
The L2 norms of the magnetic field divergence vs. the mesh size. Comparison between the Helmholtz formulation and

conservative formulation with: t1=0.1((2U/h)2+ (4h/h2)2)−0.5; t2=Uh/2; h=1.2×10−3.
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Figure 2. Different L2 norms vs. the mesh size; conservative formulation with t1=1.0((2U/h)2+ (4h/h2)2)−0.5;
t2=Uh/2; h=1.2×10−3.

The convergence rates, obtained for the two expressions of t1 are the same. Convergence
rates of 1 were obtained for the magnetic field divergence and for the scalar p. The
convergence rate for the magnetic induction is of order 2 and the gradient of p is bounded by
a constant (Figure 4). As expected, the linear interpolation on tetrahedral elements keeps the
optimal convergence rates for the magnetic induction and its gradient, while p and its gradient
convergence at suboptimal rates.

When t2=Uh/2, the best results were obtained in terms of the error on Bh and on its
divergence. However, the differences between these results and those obtained with t2=0 are
not very important. Again the convergence rates are those expected, optimal for the magnetic
field and suboptimal for the scalar p (Figure 5). Once more, the results obtained are quite
independent of t1 and of the constant a.

5.2. Unsteady case

In order to highlight the advantages of using the conservative stable formulation (35)–(36)
rather than a formulation derived from the ‘Helmholtz’ equation (11), one should look at the
behavior of the solutions obtained with the two methods, for an unsteady problem, and
compare them in terms of the norm of the divergence of the magnetic field. In the same
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manner as in Section 5.1, the velocity vector U= (1, 0, 0)T, the sollicitation force vector
f= (2x−2h+1, −2h, 2z)T and the Dirichlet boundary conditions are imposed in such a way
as to reproduce approximately an arbitrary unsteady solution of the continuous problem
B= (x2+ t, y2, −2(x+y)z)T and p=0. Computations have been made with the following
coefficients: t1=1.0h2/4h, t2=Uh/2 and h=1.2×10−1.

Figures 6 and 7 show the evolution of the divergence of the magnetic field as a function of
the time steps. In Figure 6, the first 50 time steps are highlighted, while in Figure 7 the number
of time steps is set to 1000. It is seen that the conservative formulation performs much better
than the ‘Helmholtz’ formulation. It reaches an ‘optimal’ value after a few time steps, then it
almost keeps on that same divergence (in reality the norm of the divergence keeps on
reducing). With the ‘Helmholtz’ formulation, the divergence first increases then is reduced to
a constant plateau that is approximately five times higher than the one obtained with the
conservative formulation.

5.3. The Hartmann–Poiseuille flow

The Hartmann flow is one of the cornerstone examples of the MHD flows (Moreau [23]).
The validation of any MHD code should use this flow as a benchmark test. Suppose a liquid
metal flowing under the influence of a pressure gradient, in the x-direction, through a

Figure 3. Different L2 norms vs. the mesh size; conservative formulation with t1=0.1(h2/4h); t2=Uh/2; h=1.2×
10−3.
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Figure 4. Different L2 norms vs. the mesh size; conservative formulation with t1=0.1(h2/4h); t2=0; h=1.2×10−1.

rectangular cross-section duct that is infinitely long in the z-direction. Suppose a uniform
external magnetic field B0 is applied along the y-direction. The liquid flow induces a
perturbation of the imposed magnetic field B0, that is in the same x-direction as the flow.
Assuming that the walls are at y=9L and are perfectly insulating, using the non-slip
boundary conditions for the velocity and assuming the perturbation of the magnetic field to be
zero at these walls, the problem has an analytical solution for the velocity and the magnetic
field, that can be put in the following form:

Ux= −
rGHa
gsB0

2

�cosh(Ha)−cosh(yHa/L)
sinh Ha

�
, (41)

Bx= −
B0Rem

Ha
�sinh(yHa/L)− (y/L) sinh(Ha)

cosh(Ha)−1
�

, (42)

where Bx and Ux are respectively, the x-components of the magnetic and the velocity fields, rG
the pressure gradient keeping the fluid in motion (r being the density) and Rem and Ha are the
magnetic Reynolds number and the Hartmann number respectively, defined as:

Rem=smUL, (43)
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Ha=B0L
� s

rn

�1/2

. (44)

The square of the Hartmann number is the ratio between the electromagnetic forces and the
viscous forces. In Equation (43), U is the velocity Ux at y=0 and n is the kinematic viscosity
of the liquid metal.

The Hartmann flow with the velocity field given as an input data, has been computed for the
following physical parameters: s=7.14×105 (V m)−1, h=1.2×10−1 m2 s−1, rn=1.5×
10−4 kg m−1 s−1, rG=4.85×10−5 Pa m−1, L=0.5 m, B0=1.4494×10−4 Tesla. The
results obtained from the analytical solution are compared with the results from the numerical
computations. The agreement between the two is quite good (Figure 8). Then a parametric
study is made using the Hartmann number as a parameter (Ha=1, 2, 5, 10, 20) (Figure 9).
This parametric study shows a very good agreement with the analytical solution. Furthermore,
this study puts into evidence the building of the Hartmann layer.

Figure 10 shows the analytical solution for the velocity (Ha=1, 2, 5, 10, 20). It is seen that
the intensity of the applied transversal magnetic field influences the velocity field. From a
Poiseuille profile when the magnetic field is zero (Ha=0), the velocity is flattened and becomes
quite constant in the core region of the duct, with the gradient of the velocity concentrated in
two boundary layers (Hartmann layer) near the walls, when the magnetic field is strong
(Ha�1). The flattening of the velocity profile is due to the magnetic braking of the flow. In

Figure 5. Different L2 norms vs. the mesh size; conservative formulation with t1=0.1(h2/4h); t2=Uh/2; h=1.2×
10−1.
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Figure 6. The L2 norms of the magnetic field divergence vs. the time steps number. Comparison between the
Helmholtz formulation and the conservative formulation with: t1=0.1(h2/4h); t2=Uh/2; h=1.2×10−1.

Figure 7. The L2 norms of the magnetic field divergence vs. the time steps number. Comparison between the
Helmholtz formulation and the conservative formulation with: t1=0.1(h2/4h); t2=Uh/2; h=1.2×10−1.
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Figure 8. The induced magnetic field along the y-axis; Ha=3.45, Rem=0.0916.

Figure 9, one can see the magnetic signature of this boundary layer and as the Hartmann
number is increased from 1 to 20, one can see a boundary layer type behavior developing for
the induced magnetic field (Figure 9).

Figure 9. The induced adimensionalized magnetic field B* along the adimensionalized co-ordinate Y* (B*=BxB0/
mrGL, Y*=y/L).
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Figure 10. The x-component of the velocity along the y-axis.

Figure 11. The evolution of the induced magnetic field a vs. the co-ordinate y for different times t ; comparison
between analytical and numerical solutions.
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Figure 12. The evolution of the velocity u vs. the co-ordinate y for different times t ; the analytical solution.

This behavior can be put into evidence because the walls are perfectly insulating, which
allows the use of the Dirichlet conditions for the magnetic field. If the walls were perfectly
conducting then the boundary conditions should be set to the Neumann-type conditions and
hence the magnetic signature of the Hartmann layer would disappear.

5.4. The MHD Rayleigh flow

Suppose an infinite plane plate is at rest in a semi-infinite domain that is electrically
conducting. Let B0=0 be an applied magnetic field along y, the co-ordinate normal to the
plate. Suppose the plate is suddenly set in motion at t=0, with a constant velocity U. Then,
the motion propagates within the fluid domain as a wave. Ahead of this diffusive wave front,
the fluid is still at rest; before the front, the fluid is in motion. Within the moving fluid, one
can distinguish two regions: The Hartmann layer in the vicinity of the plane plate, which has
a characteristic thickness d= (rn/s)1/2/B0, and a second region that is essentially a uniform
plateau where the velocity is maximum and constant. The development of such a velocity field
induces a perturbation in the imposed magnetic field. This perturbation travels as a plane
wave. This wave is called the Alfven wave and travels within the fluid domain with a constant
velocity A0=B0/(mr)1/2. When the kinematic viscosity of the fluid is equal to its magnetic
diffusivity, then the magnetic Prandlt number is equal to one (Prm=n/h), and an analytical
solution exists for the MHD Rayleigh problem (Moreau [23]).

This analytical solution could be written in the following form:

u=
U
4

(2− (erfl+ +erfl−)+e−A0y/d (1−erfl−)+eA0y/d (1−erfl+)), (45)

a=
U
4

((erfl− −erfl+)+e−A0y/d (1−erfl−)−eA0y/d (1−erfl+)), (46)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 535–554 (1999)



FE METHOD FOR THE MHD EQUATIONS 553

where

l9=
y9A0t
2(dt)1/2 , (47)

d=n=h, (48)

a=
b

(mr)1/2 , (49)

and u and b are the x-components of the velocity field and the induced magnetic field
respectively. This MHD Rayleigh problem, with the velocity space field given as an input data,
has been computed with the following physical parameters: s= (107/(4p)) (V m)−1, h= l.0
m2 s−1, r=0.4×10−4 kg m−1 s−1, B0=1.4494×10−4 Tesla and for t50.08 s. The results
obtained from the analytical solution and the numerical computations are compared. The
agreement between the two is quite perfect (Figure 11). The three regions (Hartmann layer, the
magnetic plateau and the wave front) are clearly distinguished. Figure 12 shows the corre-
sponding analytical solution of the velocity field u(y, t).

6. CONCLUSIONS

A stabilized conservative finite element method for the 3D MHD equations is proposed. It is
seen that the stability and the convergence of the method depends on the expressions of the
coefficients t1 and t2. The method has been validated through steady and unsteady tests. The
method was then used for computing the Hartmann flow through a duct and the MHD
Rayleigh flow around a moving plane plate. The results are seen to be in a very good
agreement with the analytical solutions.

For industrial scale problems, the convection of the magnetic field is negligible when
compared with its diffusion. Hence, if t2=0 and t1=h2/4h, one obtains a method that is
stable, accurate and quite simple. Moreover, since the conservation law is solved within the
system, this method is more conservative regarding the norm of the magnetic field divergence
than the ‘Helmholtz’ formulation.

At astrophysical scales when convection is much more important than diffusion, t2=Uh/
2 and t1= ((2U/h)2+ (4h/h2)2)−1/2 are more appropriate expressions to be used in order to
generate a stable and convergent formulation. Furthermore, these parameters generate meth-
ods that are more conservative than the ‘Helmholtz’ formulation, and the difference between
the divergence norms calculated for the two methods are quite important.

When the MHD phenomenon to be studied is an unsteady one, then the advantages of using
the conservative method with the appropriate coefficients are obvious. While the conservative
method keeps on reducing the divergence of the vector solution, the ‘Helmholtz’ formulation
gives rise to solutions that are much less accurate.
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